Trending Topic

Stastical analysis indication diabetes mellitus .generative ai
5 mins

Trending Topic

Developed by Touch
Mark CompleteCompleted
BookmarkBookmarked
Saptarshi Bhattacharya, Sanjay Kalra, Lakshmi Nagendra

Very few trials in the history of medical science have altered the treatment landscape as profoundly as the UK Prospective Diabetes Study (UKPDS). Even 44 years after its inception, the trial and post-study follow-up findings continue to fascinate and enlighten the medical community. The study was conceived at a time when there was uncertainty about […]

10 mins

Impact of Enhanced External Counter-pulsation Therapy on Glycaemic Control in People With Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis

Lakshmi Nagendra, Deep Dutta, Meha Sharma, Harish Bg
Share
Facebook
X (formerly Twitter)
LinkedIn
Via Email
Mark CompleteCompleted
BookmarkBookmarked
Copy LinkLink Copied
Download as PDF
Published Online: Oct 2nd 2023 touchREVIEWS in Endocrinology. 2023;19(2):9-15 DOI: http://doi.org/10.17925/EE.2023.19.2.8
Select a Section…
1

Abstract

Overview

Background

Enhanced external counter-pulsation (EECP) therapy is approved for refractory angina in coronary artery disease (CAD). EECP is being explored as a treatment modality in type 2 diabetes mellitus (T2DM).

Methods

The Embase, Web of Science, Cochrane Library, MEDLINE (PubMed), ClinicaltTrials.gov, CNKI database, Clinical Trials Registry-India (CTRI), and Google Scholar databases were searched for randomized controlled trials (RCTs) involving patients receiving EECP therapy in the intervention arm. The primary outcome was the changes in glycated haemoglobin (HbA1c). The secondary outcomes were the changes in blood glucose parameters, inflammatory markers and any adverse events.

Results

Data from 3 RCTs involving 71 people with T2DM/prediabetes was analysed to find out the impact of EECP therapy compared with placebo. As compared with placebo, patients receiving EECP had significantly lower HbA1C immediately after completion of therapy (mean difference [MD] -0.70%, 95% confidence interval (CI) -0.95. -0.45;p<0.00001), at 2–4 weeks post completion of therapy (MD -1.04%, 95%CI -1.32. -0.77; p<0.00001) and 7–12 weeks after therapy completion (MD -0.98%, 95% CI -1.22, -0.74; p<0.00001). EECP therapy was well tolerated without any increased side effects (risk ratio 2.36, 95% CI 0.11–52.41; p=0.59.

Conclusion

EECP therapy is effective in blood glucose and pressure lowering over at least 7–12 weeks of therapy completion. Blood glucose and pressure should be monitored with suitable modulation of drug doses to prevent hypoglycaemia and hypotension in patients with angina undergoing EECP therapy.

The PROSPERO registration number is CRD42023434533.

Keywords
2

Article

Highlights

  • Enhanced external counterpulsation (EECP) is evaluated for glycaemic control in type 2 diabetes.

  • Glycated haemoglobin reduction immediately after EECP therapy conclusion, after 2–4 weeks and after 7–12 weeks was -0.70%, 1.04% and 0.98%, respectively.

  • EECP is associated with a significant lowering of blood pressure.

  • EECP significantly lowers the levels of high-sensitivity C-reactive protein, a measure of systemic inflammation.

Enhanced external counterpulsation (EECP) therapy is a noninvasive, nonpharmacological outpatient/daycare treatment approved by the US Food and Drug Administration therapy that has been used for treating refractory angina in people living with coronary artery disease (CAD) for more than three decades now.1,2 During EECP therapy, pneumatic compression cuffs are applied to the calf and the lower and upper thigh of each leg.2 These cuffs are inflated sequentially through computer-generated signals while synchronized to the patient’s R wave on the electrocardiogram. EECP therapy leads to retrograde blood flow in the aorta, resulting in a diastolic augmentation of blood flow and improved coronary perfusion pressure during diastole.2 Thereafter, the cuffs simultaneously deflate before the onset of systole, decreasing vascular resistance, assisting with systolic unloading and decreasing cardiac workload, thereby reducing angina.2 Mechanistically, shear stimulus in the femoral and brachial arteries results in increased endothelial nitric oxide (NO) production, decreased systematic inflammation (high-sensitivity C-reactive protein) and improved endothelin-1 levels.3,4 The increased production of vasodialators such as NO results in reduced myocardial oxygen demand, increased venous return and cardiac output, improved endothelial function, promoted coronary collateral development and recruitment, and prolonged time to exercise-induced ST depression.4 Seven weeks of EECP therapy have been found to reduce angina symptoms and frequency in patients with CAD; however, the benefits of EECP therapy have been found to be more blunted in people with diabetes.5

Skeletal muscles are a major organ for glucose disposition and storage following meal-induced hyperglycaemia. Physiologically, glucose is uptaken and stored in skeletal muscles through three major mechanisms: insulin-mediated glucose uptake, which is impaired in people with type 2 diabetes mellitus (T2DM) due to skeletal muscle insulin resistance;6 muscle contraction-mediated glucose uptake, which explains the beneficial impact of glycaemic control in T2DM;7 and NO-mediated glucose uptake.8 NO-mediated glucose uptake may explain the beneficial impact of EECP therapy on glycaemia in T2DM, as EECP therapy works by enhancing NO formation, thus leading to increased NO-mediated glucose uptake in skeletal muscles. Several randomized controlled trials (RCTs) evaluating the effect of EECP therapy on glycemic parameters in patients with T2DM have been published.9–11 However, no systematic review and meta-analysis providing a holistic view of the role played by EECP therapy in treating T2DM has been published to date. Hence, we conducted a systematic review and meta-analysis to evaluate the safety and efficacy of EECP therapy for glycaemic control in patients with T2DM compared with control patients.

Methods

The systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO); the registration number is CRD42023434533. For this systematic review and meta-analysis, we considered RCTs involving people with T2DM or prediabetes receiving EECP therapy in the study group compared with participants receiving placebo or any other medication in the control group. Patients with other forms of diabetes like type-1 diabetes, gestational diabetes, and other rarer monogenic causes of diabetes were excluded. The primary outcome of the meta-analysis was changes in glycated haemoglobin (HbA1c) from baseline. The secondary outcomes were changes in fasting plasma glucose (FPG), post-prandial glucose (PPG), lipid parameters, inflammatory markers and any adverse events. Separate analyses were performed for controls receiving placebo, labelled as placebo or passive control group, and controls receiving other antidiabetes medications, labelled as active control group.

We systematically searched the Embase, Web of Science, Cochrane Library, MEDLINE (PubMed), ClinicalTrials.gov, CNKI, Clinical Trials Registry-India (CTRI) and Google Scholar databases for the following keywords or MeSH terms: (enhanced external counter-pulsation therapy) OR (external counter-pulsation therapy) OR (counter-pulsation therapy) for the articles published untill May 2023. Methodologic details regarding literature review have been elaborated in a previous meta-analysis published by our group.12 The risk of bias assessment was done by three authors independently using the risk of bias assessment tool in the Review Manager (RevMan) version 5.4 software. The different types of bias that were assessed had been elaborated in previous meta-analyses conducted by our group: selection bias, performance bias, detection bias, attrition bias, reporting bias and other bias.12,13 Other bias included sources of funding, especially when there is a pharmaceutical/organization involvement in the manufacture and sale of EECP devices, and conflict of interests. A random effects model was used for the meta-analysis. Forest plots were generated to assess the heterogeneity for all outcomes. Specifically, heterogeneity was analysed using the χ2 test on N-1 degrees of freedom, an alpha of 0.05 used for statistical significance and the I2 test.13,14 The certainty of the evidence of the major outcomes in this meta-analysis was evaluated using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach.15 A table highlighting the grading of key outcomes was generated using the GRADE software. The details have been elaborated elsewhere.13 Publication bias was assessed for key outcomes using funnel plots (Supplementary Figure S1).16

Results

A total of 162 articles were found from databases after the initial search (Figure 1). Eighteen duplicates were removed. After screening the titles and abstracts of the remaining 144 articles, the search was reduced to 35 studies, which were evaluated in detail for inclusion in this meta-analysis (Figure 1). Finally, three RCTs were found to fulfil all the inclusion and exclusion criteria and were analysed in our systematic review and meta-analysis.9,10,17 The three articles included in our systematic review and meta-analysis are described in detail in Table 1.

In 2 of the RCTs, the study population was patients with T2DM.9,10 In the study by Martin and Braith, 1 of 6 participants (17%) in the control group and 4 of 12 (33%) participants in the EECP therapy group had prediabetes; the remaining participants had T2DM.17 All three trials compared EECP therapy with placebo over and above the standard of care in T2DM.9,10,17 The study by Hoong et al. did not have a comparator group and hence was excluded from the analysis.11

The risk of bias in these studies is summarized in Figures 2a and b. The risk of selection, attrition and reporting bias was judged to be low in all three studies.9,10,17 There was a low risk of performance bias in one out of the three studies.9 The risk of detection bias was high in two of the three studies,9,17 while the risk of bias was unclear in Sardina et al.10 Other bias was judged to be at high risk in two out of the three studies.9,10

Outcomes after therapy completion

Therapy was considered completed at around 35 sessions of EECP therapy over 7–8 weeks. Data from three studies involving a total of 71 people with T2DM or prediabetes undergoing EECP therapy were analysed to determine the impact of EECP therapy compared with the control participants.9,10,17 At therapy completion, patients receiving EECP therapy had significantly lower HbA1c levels (mean difference [MD] -0.70%, 95% confidence interval [CI] -0.95, -0.45; p<0.00001; I2=0% [low heterogeneity (LH)]; high certainty of evidence [HCE]; Figure 3a), FPG (MD -1.17 mmol/l, 95% CI -1.56, -0.77); p<0.00001; I2=0% [LH]; HCE; Figure 3b) and 2-hour PPG (MD -2.35 mmol/l, 95% CI -3.49, -1.21; p<0.0001; I2=78% [moderate heterogeneity (MH)]; moderate certainty of evidence; Figure 3c) levels compared with the placebo or passive control group. SBP was significantly lower in the EECP therapy group compared with the placebo or passive control group (MD -2.97 mm Hg, 95% CI -4.23, -1.71); p<0.00001; I2=0% [LH]; Figure 3d), while DBP was similar between the two groups (MD 1.86 mm Hg, 95% CI -1.42, 5.14; p=0.27; I2=60% [MH]; Figure 3e). Body mass index (MD -0.11, 95% CI -0.58, 0.37; p=0.66; I2=0% [LH]; Figure 3f) and interleukin-6 (MD -0.50 pg/ml, 95% CI -1.16, 0.17; p=0.14; I2=85% [high heterogeneity (HH)]; low certainty of evidence; Figure 3g) were similar between groups. C-reactive protein (MD -1.20; 95% CI -2.04, -0.37; p=0.005; I2=0% [LH]; Figure 3h) was significantly lower in the EECP therapy group compared with the placebo or passive control group after therapy completion. Adverse effects were similar between the groups (risk ratio 2.36, 95% CI 0.11–52.41; p=0.59; LH; HCE). The only adverse event related to EECP therapy was chafing on the legs where the cuffs had been applied. No patient experienced withdrawal from undergoing EECP therapy at trial completion. In one trial, the participants reported that they had sensitive skin, and wearing cotton pants and applying moisturiser during therapy helped to reduce their symptoms.9

Outcomes at 2–4 weeks after therapy completion

Data from 2 studies involving 53 people with T2DM were analysed to determine the impact of EECP therapy compared with placebo at 2–4 weeks after therapy completion.9,10 Compared with patients in the placebo or passive control group, patients receiving EECP therapy had significantly lower HbA1C (MD -1.04%, 95% CI -1.32, -0.77; p<0.00001; I2=0% [LH]; HCE; Figure 4a), FPG (MD -1.03 mmol/l, 95% CI -1.43, -0.63; p<0.00001; I2=0% [LH]; Figure 4b) and SBP (MD -7.40 mm Hg, 95% CI -13.56, -1.24; p=0.02; I2=79% [MH]; Figure 4c) levels at 2–4 weeks after therapy completion. DBP (MD -0.36 mm Hg, 95% CI -4.30, 3.57; p=0.86; I2=78% (MH); Figure 4d) was similar between the groups.

Outcomes at 7–12 weeks after therapy completion

Data from 2 studies involving 53 people with T2DM was analysed to determine the impact of EECP therapy compared with placebo at 7–12 weeks after completion of therapy.9,10 Compared with patients in the placebo or passive control group, patients receiving EECP therapy had significantly lower levels of HbA1C (MD -0.98%, 95% CI -1.22, -0.74; p<0.00001; I2=0% [LH]; HCE; Figure 5a) and FPG (MD -0.66 mmol/l, 95% CI -1.05, -0.28; p=0.0008; I2=0% [LH]; Figure 5b). SBP (MD -3.37 mm Hg, 95% CI -11.26, 4.53; p=0.40; I2=88% [HH]; Figure 5c) and DBP (MD 0.71 mm Hg, 95% CI -3.25, 4.67; p=0.73; I2=81% [HH]; Figure 5d) levels were similar between the two groups.

The key findings of the study and the side effect profile of EECP therapy are summarized in Table 2. Funnel plots were plotted to evaluate publication bias and are shown in Supplementary Figure S1.

Discussion

Standard EECP therapy consists of around 35 1-hour sessions, which typically occur once per day from Monday to Friday.2 A maximum of two sessions per day can take place, subject to the patient’s wishes and tolerance. Nearly a fifth of the patients who are not able to complete the 35-sessions program may need extended therapy.2,18 Commonly accepted contraindications for EECP therapy include arrhythmias that interfere with machine triggering, bleeding diathesis, active thrombophlebitis, severe peripheral artery disease, severe aortic valve disease, prior history of aortic surgery and severe tachycardia (>120 beats/min).18 Decompensated homeostasis needs to be stabilized before considering EECP therapy.

Our analysis noted an impressive reduction of -0.70% in HbA1c level in participants with T2DM or prediabetes following EECP therapy completion. These patients had EECP therapy for glycaemic control and had no major underlying cardiac disease. Notably, this reduction in HbA1c is not transient but last even up to 7–12 weeks after completing therapy. HbA1c level reduced by 1.04% and 0.98% at 2–4 weeks and 7–12 weeks after completing therapy, respectively. However, the glycaemic durability of EECP therapy for glycaemic control beyond 12 weeks is not known. Hence, longer follow-up studies investigating glycaemic durability are warranted for determining whether repeat EECP therapy follow-up sessions are needed in patients with T2DM.

A similar reduction was also noted in FPG and 2-hour PPG. It is also important to note that a significant reduction in blood pressure was also noted with EECP therapy at the end of the therapy, which persisted till about 2–4 weeks after therapy and thereafter became not significant after 7–12 weeks of therapy. EECP therapy was well tolerated without any major side effects warranting treatment discontinuation.

Our analysis shows that EECP therapy is effective in reducing blood glucose and blood pressure in people with diabetes without CAD. This reduction in blood glucose was accompanied by a reduction in hs-CRP levels, which is a measure of systematic inflammation. However, interleukin-6 levels were similar in the study and the control groups. Our analysis is limited by the small number of patients evaluated. Hence, we need bigger trials with a larger number of people with T2DM with a longer duration of follow-up. The rationale for analysing both people with T2DM and prediabetes together, as was done in one of the RCTs, is that dysglycaemia is a continuum, and there is no reason for EECP therapy not to work in prediabetes if it works in T2DM.17 Furthermore, the number of patients was too small to analyse data from people with prediabetes to be analysed separately and is a limitation of this meta-analysis.

Our analysis supports the use of EECP therapy as an adjunctive therapy in people on polypharmacy for T2DM. EECP therapy may help to lower the pill burden or reduce the total daily dose of insulin requirement in these patients. However, these data need to be confirmed by bigger, multicentre clinical studies before they can be replicated in clinical practice. Furthermore, the process of EECP therapy needs to be simplified to be implemented on a large scale; as of today, this is not possible. The cost also remains a major barrier to routinely using EECP therapy, which is a required treatment for a chronic condition such as T2DM. Furthermore, patients with T2DM must go to a medical centre to undergo EECP therapy; this represents a major limitation to using EECP for glycaemic control. Finally, EECP therapy is a time-consuming procedure; consequently, it interferes with the personal and professional lives of the patients.

An important corollary that can be derived from our analysis is that people with T2DM on EECP therapy for angina due to CAD need to reduce the dose of their antidiabetes medication (oral antidiabetes medications and/or insulin) to prevent the risks of hypoglycaemia during and up until at least 12 weeks after EECP therapy completion. Similarly, these patients would also need to modulate the doses of their hypertension medications.

The current systematic review and meta-analysis have a few limitations. First, data are available only up to 12 weeks after EECP therapy completion. What happens beyond that point is not known. The total duration of glycaemic durability of EECP therapy remains to be determined, and it represents an important area of future research in EECP therapy. Second, our analysis included data from only 3 RCTs because not enough RCTs have been published on this subject. Hence, RCTs are urgently needed to evaluate the different metabolic aspects of EECP therapy. EECP therapy has been shown to improve post-exercise recovery in elite rugby league players.19 It has also been shown to be beneficial in CAD, one of the macrovascular complications of diabetes, thus improving the quality of life in these patients.20 EECP therapy improves exercise tolerance in people with CAD.21 EECP therapy has also been shown to reduce the risk of contrast-induced nephropathy in patients with T2DM with CAD undergoing coronary angiography or percutaneous coronary intervention.22 A few small studies have suggested the beneficial impact of EECP therapy on transcranial Doppler middle cerebral artery flow velocities and National Institutes of Health Stroke Scale scores in patients with acute ischaemic stroke.23,24 The impact of EECP therapy on other macrovascular and microvascular complications of diabetes is not known and remains an important area of future research.

To conclude, EECP therapy is effective in reducing blood glucose and blood pressure in people with T2DM, whose effects extend till at least 7–12 weeks of therapy completion. Hence, blood glucose and blood pressure should be routinely monitored in patients with angina undergoing EECP therapy with suitable modulation of drug doses to prevent hypoglycaemia and hypotension.

3

References

List View
Grid View
1
Copy DOIDOI Copied
Visit DOI Link

 Gurovich ANBraith RWEnhanced external counterpulsation creates acute blood flow patterns responsible for improved flow-mediated dilation in humansHypertens Res. 2013;36:297305. DOI10.1038/hr.2012.169.

2
Copy DOIDOI Copied
Visit DOI Link

 Sharma URamsey HKTak TThe role of enhanced external counter pulsation therapy in clinical practiceClin Med Res. 2013;11:22632. DOI10.3121/cmr.2013.1169.

3
Copy DOIDOI Copied
Visit DOI Link

 Beck DTMartin JSCasey DPet alEnhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischemic left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2014;41:62836. DOI: 10.1111/1440-1681.12263.

4
Copy DOIDOI Copied
Visit DOI Link

 Braith RWConti CRNichols WWet alEnhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: a randomized sham-controlled study.Circulation. 2010;122:16121620. DOI: 10.1161/CIRCULATIONAHA.109.923482.

5
Copy DOIDOI Copied
Visit DOI Link

 Sahebjami FMadani FRKomasi Set alRefractory angina frequencies during 7 weeks treatment by enhanced external counterpulsation in coronary artery disease patients with and without diabetesAnn Card Anaesth. 2019;22:27882. DOI10.4103/aca.ACA_86_18.

6
Copy DOIDOI Copied
Visit DOI Link

 Lin YSun ZCurrent views on type 2 diabetesJ Endocrinol2010;204:111DOI10.1677/JOE-09-0260.

7
Copy DOIDOI Copied
Visit DOI Link

 Klip AThe many ways to regulate glucose transporter 4Appl Physiol Nutr Metab. 2009;34:4817. DOI10.1139/H09-047.

8
Copy DOIDOI Copied
Visit DOI Link

 Hong YHBetik ACMcConell GKRole of nitric oxide in skeletal muscle glucose uptake during exerciseExp Physiol. 2014;99:156973. DOI10.1113/expphysiol.2014.079202.

9
Copy DOIDOI Copied
Visit DOI Link

 Coombes JSDias KALal Ret alEfficacy of two doses of external counterpulsation (ECP) on glycemic control in people with type 2 diabetes mellitus: A randomized SHAM-controlled trialDiabetes Res Clin Pract. 2023;200:110701. DOI: 10.1016/j.diabres.2023.110701.

10
Copy DOIDOI Copied
Visit DOI Link

 Sardina PDMartin JSAvery JCBraith RWEnhanced external counterpulsation (EECP) improves biomarkers of glycemic control in patients with non-insulin-dependent type II diabetes mellitus for up to 3 months following treatment. Acta Diabetol. 2016;53:74552. DOI10.1007/s00592-016-0866-9.

11
Copy DOIDOI Copied
Visit DOI Link

 Hoong CWSTan MLSKao SLKhoo EYHEffects of external counter-pulsation on endothelial function assessed by peripheral artery tonometry, levels of glycaemia and metabolic markers in individuals with type 2 diabetes mellitusDiabetes Metab Syndr2020;14:213945. DOI10.1016/j.dsx.2020.11.003.

12
Copy DOIDOI Copied
Visit DOI Link

 Dutta DBhattacharya SKumar Met alEfficacy and safety of novel thiazolidinedione lobeglitazone for managing type-2 diabetes a meta-analysisDiabetes Metab Syndr. 2023;17:102697. DOI10.1016/j.dsx.2022.102697.

13
Copy DOIDOI Copied
Visit DOI Link

 Dutta DAgarwal AMaisnam Iet alEfficacy and safety of the novel dipeptidyl peptidase-4 inhibitor gemigliptin in the management of type 2 diabetes: A meta-analysis. Endocrinol Metab. 2021;36:37487. DOI10.3803/EnM.2020.818.

14
Copy DOIDOI Copied
Visit DOI Link

 Liberati AAltman DGTetzlaff Jet alThe PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ2009;339:b2700. DOI: 10.1136/bmj.b2700.

15
Copy DOIDOI Copied
Visit DOI Link

 Guyatt GHOxman ADVist GEet alGRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:9246. DOI10.1136/bmj.39489.470347.AD.

16
Copy DOIDOI Copied
Visit DOI Link

 Song FEastwood AJGilbody Set alPublication and related biasesHealth Technol Assess. 2000;4:1115. DOI10.3310/hta4100.

17
Copy DOIDOI Copied
Visit DOI Link

 Martin JSBraith RWAnti-inflammatory effects of enhanced external counterpulsation in subjects with abnormal glucose toleranceAppl Physiol Nutr Metab. 2012;37:12515. DOI10.1139/h2012-112.

18
Copy DOIDOI Copied
Visit DOI Link

 Prasad GNRamasamy SThomas JMet alEnhanced external counterpulsation (EECP) therapy: Current evidence for clinical practice and who will benefit? Indian Heart J2010;62:296302.

19
Copy DOIDOI Copied
Visit DOI Link

 Roberts LACaia JJames LPet alEffects of external counterpulsation on postexercise recovery in elite rugby league playersInt J Sports Physiol Perform2019;14:13506DOI10.1123/ijspp.2018-0682.

20
Copy DOIDOI Copied
Visit DOI Link

 Jan RKhan AZahid Set alThe effect of enhanced external counterpulsation (EECP) on quality of life in patient with coronary artery disease not amenable to PCI or CABG. Cureus. 2020;12:e7987. DOI10.7759/cureus.7987.

21
Copy DOIDOI Copied
Visit DOI Link

 Yang HSong LNing Xet alEnhanced external counterpulsation ameliorates endothelial dysfunction and elevates exercise tolerance in patients with coronary artery diseaseFront Cardiovasc Med. 2022;9:997109. DOI10.3389/fcvm.2022.997109.

22
Copy DOIDOI Copied
Visit DOI Link

 Zeng C-MZhao Y-MZhong X-Jet alReduction in risk of contrast-induced nephropathy in patients with chronic kidney disease and diabetes mellitus by enhanced external counterpulsationFront Endocrinol. 2022;13:973452. DOI10.3389/fendo.2022.973452.

23
Copy DOIDOI Copied
Visit DOI Link

 Guluma KZLiebeskind DSRaman Ret alFeasibility and safety of using external counterpulsation to augment cerebral blood flow in acute ischemic stroke-the counterpulsation to upgrade forward flow in stroke (CUFFS)J Stroke Cerebrovasc Dis2015;24:2596604. DOI10.1016/j.jstrokecerebrovasdis.2015.07.013.

24
Copy DOIDOI Copied
Visit DOI Link

 Li BWang WMao Bet alHemodynamic effects of enhanced external counterpulsation on cerebral arteries: A multiscale studyBiomed Eng Online. 2019;18:91. DOI10.1186/s12938-019-0710-x.

4

Article Information

Disclosure

Lakshmi Nagendra, Deep Dutta, Meha Sharma and Harish Bg have no financial or non-financial relationships or activities to declare in relation to this article.

Compliance With Ethics

This article involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors.

Review Process

Double-blind peer review.

Authorship

The named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Correspondence

Deep Dutta, Center for Endocrinology, Diabetes, Arthritis & Rheumatism (CEDAR) Super-speciality Healthcare, PLOT 107 & 108, SECTOR 12A DWARKA Behind Modern Bazar/ Krishna Mart/ Bikanerwala, Block A, Sector 12 Dwarka, Dwarka, Delhi, 110075, India. E: deepdutta2000@yahoo.com

Support

No funding was received in the publication of this article.

Access

This article is freely accessible at touchENDOCRINOLOGY.com. © Touch Medical Media 2023.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Received

2023-06-23

5

Further Resources

Share
Facebook
X (formerly Twitter)
LinkedIn
Via Email
Mark CompleteCompleted
BookmarkBookmarked
Copy LinkLink Copied
Download as PDF
Close Popup