Efficacy and Safety of Early Initiation of Sodium– Glucose Co-transporter-2 Inhibitors Following Acute Myocardial Infarction: A Systematic Review and Meta-analysis

Deep Dutta,¹ Lakshmi Nagendra,² ABM Kamrul-Hasan³ and Kunal Mahajan⁴

1. Department of Endocrinology, CEDAR Super-speciality Healthcare, Dwarka, New Delhi, India; 2. Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India; 3. Department of Endocrinology, Mymensingh Medical College, Mymensingh, Bangladesh; 4. Department of Cardiology, Himachal Heart Institute, Mandi, Himachal Pradesh, India

https://doi.org/10.17925/EE.2025.21.1.1

ackground. Sodium-glucose co-transporter-2 inhibitors (SGLT2i) are the preferred agents for managing type 2 diabetes in patients with established atherosclerotic cardiovascular disease and for reducing hospitalization for heart failure (HHF) in patients with heart failure with reduced and preserved ejection fraction. We undertook this meta-analysis, as, to date, no meta-analysis has holistically analysed the potential benefits and safety of SGLT2i in patients with acute myocardial infarction (MI). Methods. Electronic databases were searched for randomized controlled trials (RCTs) involving patients with MI who received SGLT2i in the intervention arm (initiated within 2 weeks of the index event) and placebo/active comparator in the control arm. The primary outcome was to evaluate the impact on cardiovascular death, all-cause death and HHF. The secondary outcomes were to evaluate the impact on echocardiographic parameters, N-terminal pro-b-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein, MI, stroke, all-cause hospitalization and safety issues. Results. From initially screened 8,922 articles, data from 6 RCTs were analysed (7,409 patients). Early initiation of SGLT2i following MI was associated with significantly lower future HHF (odds ratio [OR]: 0.75; 95% confidence interval [CI]: 0.62–0.90; p=0.002; $l^2=0\%$) and significantly higher left-ventricular ejection fraction (mean difference [MD]: 1.65%; 95% CI: 0.34–2.96; p=0.01; $l^2=0\%$) compared with placebo. Compared with placebo, SGLT2i following MI had no beneficial impact on cardiovascular deaths (OR: 1.04; 95% CI: 0.83–1.30; p=0.76; I²=0%), all-cause mortality (OR: 1.00; 95% CI: 0.82–1.21; p=0.98; l²=0%), stroke (OR: 0.58; 95% CI: 0.26–1.27; p=0.17), all-cause hospitalization (OR: 1.13; 95% CI: 0.97–1.32; p=0.11; l²=0%) and percentage change in NT-proBNP (MD: 1.18%; 95% CI: -9.78 to 12.14; p=0.83; l²=52%). SGLT2i were well tolerated without increased ketoacidosis, acute renal failure or hepatic injury. Conclusion. Early initiation of SGLT2i in acute MI is safe, well tolerated and associated with a reduction in HHF.

Keywords

Dapagliflozin, empagliflozin, meta-analysis, myocardial infarction, safety, sodium–glucose co-transporter-2 inhibitor

Disclosures: Deep Dutta, Lakshmi Nagendra, ABM Kamrul Hasan and Kunal Mahajan have no financial or non-financial relationships or activities to declare in relation to this article.

Review Process: Double-blind peer review.

Compliance with ethics: This article involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors. Data have been sourced from publicly available databases.

Data availability: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Authorship: All named authors meet the criteria of the International Committee of Medical Journal Editors for authorship for this manuscript, take responsibility for the integrity of the work as a whole and have given final approval for the version to be published.

 $\mbox{Access:}$ This article is freely accessible at touchENDOCRINOLOGY.com. $\mbox{\ensuremath{\mathbb S}}$ Touch Medical Media 2025.

Received: 9 September 2024

Accepted: 14 December 2024

Published online: 7 February 2025

Citation: touchREVIEWS in Endocrinology. 2025;21(1):14-23

Corresponding author: Dr Deep Dutta, Centre for Endocrinology, Diabetes, Arthritis and Rheumatism (CEDAR) Super-speciality Clinics, Plot 107 & 108, Sector 12A, Dwarka, New Delhi 110075, India. E: deepdutta2000@yahoo.com

Support: No funding was received in the publication of this article.

Article Highlights

Early use of sodium–glucose co-transporter-2 inhibitors following myocardial infarction was associated with the following factors:

• Lower hospitalization for heart failure (odds ratio [OR]: 0.75; 95% confidence interval [CI]: 0.62–0.90; p=0.002).

• Similar cardiovascular deaths (OR: 1.04; 95% CI: 0.83–1.30;

p=0.76).

- Similar all-cause mortality (OR: 1.00; 95% CI: 0.82–1.21; p=0.98).
- Similar risks of ketoacidosis, acute renal failure or hepatic injury.

Early and timely percutaneous coronary intervention (PCI) therapies, effective anti-platelet therapy along with aggressive early lipid lowering with high-intensity statins and other lipid mediations are the current cornerstones for improving short- and long-term outcomes in patients with acute myocardial infarction (AMI).¹ However, despite these advances, a significant amount of residual cardiovascular (CV) risk remains in these patients for a recurrent CV event, especially in the initial few weeks of the index event. Sodium–glucose co-transporter-2 inhibitors (SGLT2i) are considered to be the preferred agents for managing type 2 diabetes (T2D) in patients with established atherosclerotic cardiovascular disease (ASCVD) and those with multiple risk factors for ASCVD.^{2,3} In addition, SGLT2i have established themselves as the preferred agents for reducing hospitalization for heart failure (HHF) in patients with heart failure with reduced and preserved ejection

fraction, regardless of their underlying glycaemic status.²⁻⁴ SGLT2i have demonstrated themselves to improve a broad range of CV outcomes, especially CV death and HHF in different randomized controlled trials (RCTs) and meta-analyses.³⁻⁵

Recently, several RCTs have been published evaluating the role of SGLT2i in myocardial infarction (MI).⁶⁻⁹ Traditionally, the use of SGLT2i, in general, has been avoided during acute illness (infections, surgery or acute events such as AMI) due to safety concerns primarily related to the increased risk of euglycaemic ketosis.¹⁰ In addition, the effectiveness of a medicine in improving CV and mortality outcomes in patients with stable ASCVD and chronic heart failure does not guarantee its efficacy in AMI. A prime example is sacubitril-valsartan, which reduces CV deaths and HHF in patients with chronic heart failure with reduced ejection fraction but not when used in the setting of AMI (Prospective ARNI versus ACE Inhibitor Trial to Determine Superiority in Reducing Heart Failure Events after MI [PARADISE-MI trial]; ClinicalTrials. gov identifier: NCT02924727).^{11,12} This makes it even more important to study SGLT2i in AMI, despite their proven efficacy in chronic heart failure. A literature review revealed that no meta-analysis is available that has holistically analysed and summarized the clinical efficacy and safety of SGLT2i following MI. Hence, the aim of this systematic review and meta-analysis (SRM) was to evaluate the efficacy and safety of SGLT2i in MI.

Methods Methodology

This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklists and the procedures described in the Cochrane Handbook for Systematic Reviews of Interventions.^{13,14} The SRM was registered with PROSPERO (CRD42024533973), and the protocol summary is accessible online. All RCTs published till March 2024 were considered for this meta-analysis. As ethical approval already exists for the individual studies included in the meta-analysis, no separate approval was required for this study.

Population, Intervention, Comparison, Outcomes and Study design was used as a framework to formulate eligibility criteria for the clinical trials in this SRM. The patient population (P) consisted of patients with MI; the intervention (I) was the use of SGLT2i along with the standard therapy for managing MI; the comparison or control (C) involved patients either on placebo or any other medication over the background standard therapy for MI; the outcomes (O) evaluated included all-cause death/mortality, CV death, HHF, stroke, recurrence of MI, changes in N-terminal pro-b-type natriuretic peptide (NT-proBNP), weight, echocardiography parameters and any adverse effects noted; and RCTs were considered as the study type (S) for inclusion. This study comprised RCTs with study individuals aged at least 18 years. Only those RCTs were considered for this meta-analysis where SGLT2i was initiated within 2 weeks of the index MI event.

The primary outcome was to evaluate the changes in CV death, all-cause death/mortality and HHF. The secondary outcomes of this study were to evaluate the alterations in echocardiographic parameters (left ventricular ejection fraction [LVEF]), NT-proBNP, high-sensitivity C-reactive protein (hs-CRP), occurrence of stroke, recurrence of MI, all-cause hospitalization and safety issues such as changes in weight, occurrence of ketoacidosis, acute renal failure and hepatic injury. Sub-group analysis was performed based on whether the control group received an active comparator (active control group) or a placebo (passive control group).

Search method for identifying studies

Several databases and registers, including MEDLINE (via PubMed), Scopus, Cochrane Central Register and ClinicalTrials.gov, were systematically searched. The search covered these sources from their commencement to 30 March 2024. The search terms were applied to titles only; the search technique followed a Boolean approach using the terms 'SGLT2' OR 'sodium glucose co-transporter-2 inhibitor' OR 'dapagliflozin' OR 'empagliflozin' OR 'canagliflozin' OR 'retugliflozin' OR 'sotagliflozin' AND 'myocardial infarction'.

Every recently published or unpublished clinical study in English was searched exhaustively and carefully. This search involved looking through pertinent publications and references found in the clinical trials included in the present work.

Data extraction, study selection, measurement of treatment effects and data synthesis

Four review authors independently conducted data extraction using standardized data extraction forms, with details provided elsewhere.^{15,16} The handling of missing data has also been elaborated upon in the same source.^{15,16} RevMan Web 2024 version was used for comparing the mean difference (MD) of the different primary and secondary outcomes between the SGLT2i and the control groups of the included studies. Random effects analysis models were chosen to address the anticipated heterogeneity due to variations in population characteristics and trial lengths. The inverse variance statistical method was applied for all instances. The meta-analysis encompassed forest plots that integrated data from a minimum of two trials. A significance level of p<0.05 was used.

Assessment of risk of bias in the included studies

Three authors independently assessed the risk of bias (ROB) using the ROB assessment tool in Review Manager (RevMan) Web Version 2024 (The Cochrane Collaboration, Oxford, UK, 2024) software. ROB assessment was performed under the following headings: adequate sequence generation (selection bias); adequate allocation concealment (selection bias); adequate prevention of knowledge of allocated interventions during the study; blinding of participants and personnel (performance bias); blinding of outcome assessors (detection bias); incomplete outcome data (attrition bias); and freedom from selective outcome reporting (reporting bias). Involvement of pharmaceutical organizations in the funding, conducting the study and preparing the draft was considered to be high ROB under other bias sub-headings.

Assessment of heterogeneity

The assessment of heterogeneity was initially conducted by studying forest plots. Subsequently, a χ^2 test was performed using N-1 degrees of freedom and a significance level of 0.05 to determine the statistical significance. The l^2 test was also used in the subsequent analysis.¹⁴ The specifics of understanding l^2 values have already been explained in depth elsewhere.^{15,16}

Grading of the results

The Grading of Recommendations Assessment, Development and Evaluation methodology was used to determine the quality of evidence about each meta-analysis outcome.^{17,18} The details of generating the summary of findings (SoF) table and judging the quality of evidence as 'high', 'moderate', 'low' or 'very low' have been previously reported.^{15,16}

Figure 1: Forest plot highlighting the impact of early initiation of sodium–glucose co-transporter-2 inhibitors in patients with myocardial infarction

(a)		SGI T2i		Cont	role			Odd	s ratio		Odds	ratio	
Study or Subgroup	Even	nts To	otal	Events	Total	Weig	ht l	V, Rando	om, 95% CI		IV, Rando	m, 95% (CI
Adel 2022		1	45	2	4	8 0	8%	0.52	10 05 5 971				
Butler 2024 (EMPACT-MI TRIAL)		132	3260	131	326	2 82.	6%	1.01	[0.79 . 1.29]				
James 2024 (DAPA-MI TRIAL)		27	2019	23	199	8 16.	0%	1.16	[0.67, 2.04]		_		
von Lewinski 2022 (EMMY TRIAL)		2	237	0	23	9 0.	5%	5.08 [0	.24 , 106.48]				
Total (95% CI)			5561		554	7 100.	0%	1.04	[0.83 , 1.30]		(
Total events:		162		156								Ι.	
Heterogeneity: Tau ² = 0.00; Chi ² = 1	.57, df	= 3 (P	= 0.67)); l² = 0%						0.01	0.1	1 10	100
Test for overall effect: Z = 0.30 (P = Test for subgroup differences: Not a	0.76) ipplicat	ble								Favour	s SGLT2i	Favor	urs Placebo
(b)		SGLT2i		Cont	rols			Odd	s ratio		Odds	s ratio	
Study or Subgroup	Ever	nts To	otal	Events	Total	Weig	ht	V, Rand	om, 95% Cl		IV, Rando	m, 95%	CI
Adel 2022		1	45	2	4	8 0.	6%	0.52	[0.05 , 5.97]			<u> </u>	
Butler 2024 (EMPACT-MI TRIAL)		169	3260	178	326	2 81.	2%	0.95	[0.76, 1.18]				
James 2024 (DAPA-MI TRIAL)		41	2019	33	199	8 17.	8%	1.23	[0.78 , 1.96]			-	
von Lewinski 2022 (EMMY TRIAL)		3	237	0	23	9 0.	4%	7.15 [0	.37 , 139.17]			· ·	
Total (95% CI)			5561		554	7 100.	0%	1.00	[0.82 , 1.21]		,	•	
Total events:		214		213						_			
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2$ Test for overall effect: $Z = 0.02$ (P = Test for subgroup differences: Not a	2.99, df 0.98) applical	f = 3 (P ble	= 0.39); I² = 0%						0.01 Favour	0.1 s SGLT2i	1 10 Favo) 100 urs Placebo
(c)		SGLT2i		Cont	rols			Odd	s ratio		Odds	ratio	
Study or Subgroup	Even	its To	otal	Events	Total	Weig	ht I	V, Rando	om, 95% Cl		IV, Rando	m, 95% (
Adel 2022		0	45	0	4	8		N	ot estimable				
Butler 2024 (EMPACT-MI TRIAL)		148	3260	207	326	2 74.	4%	0.70	[0.57, 0.87]		-		
James 2024 (DAPA-MI TRIAL)		27	2019	32	199	8 13.	1%	0.83	[0.50 , 1.40]				
von Lewinski 2022 (EMMY TRIAL)		31	237	32	23	9 12.	4%	0.97	[0.57 , 1.65]				
Total (95% CI)			5561		554	7 100.	0%	0.75	[0.62 , 0.90]		•		
Total events:	2	206		271									
Heterogeneity: Tau ² = 0.00; Chi ² = 1 Test for overall effect: $Z = 3.05$ (P = Test for subgroup differences: Not a	.45, df 0.002) pplicat	= 2 (P =	= 0.49)); I ² = 0%						0.2 Favour	0.5 s SGLT2i	1 2 Favoi	5 urs Placebo
(d)					Cont				Maan diffe				
Study or Subgroup Mean	n [%]	SD [%]	Tota	I Mean [%	6] SD	(%] 1	otal	Weight	IV, Random,	95% CI	IV, Ra	indom, 95	% CI
Adel 2022	5 1	6.64263	1	45	5 10.7	62141	4	8 5.2%	0.00 [-5.7	4 , 5.74]			
Dayem 2023 (DACAMI TRIAL)	7.63	7.2	5	50 6.	51	7.96	5	0 19.4%	1.12 [-1.8	6,4.10]			-
VON LEWINSKI 2022 (EIVINIY TRIAL)	4.7	8.595794	2 2	37 .	2.8 8.2	39979	23	9 /5.4%	1.90 [0.3	9,3.41]		-	
Total (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 0.54, df	= 2 (P =	= 0.76); l ²	3 = 0%	32			33	7 100.0%	1.65 [0.3	4 , 2.96]		•	
Test for overall effect: $Z = 2.46$ (P = 0.01) Test for subgroup differences: Not applicat	ale									F	-10 -5	0 0 Fa	5 10
(e)	510												Touro O'O'E'E
Study or Subgroup Mean [n	SG g/L] S[LT2i D [ng/L]	Total	Mean [ng/	Contro L] SD [r	ls ng/L] Ta	otal	Weight	Mean differ IV, Random,	ence 95% Cl	Me IV, R	an differer andom, 95	nce % Cl
Dayem 2023 (DACAMI TRIAL) -1	133.1	209	50	0 -8	9.8	201	50	97.4%	-43.30 [-123.6	37,37.07]	-	
MOZAWA 2021 (EMBODT TRIAL)	-033	022	3.		503	1160	33	2.0%	-30.00 [-523.10	o, 463.15	·		
Heterogeneity: Tau ² = 0.00; Chi ² = 0.00, df = Test for overall effect: $Z = 1.06$ (P = 0.29) Test for subgroup differences: Not applicable	= 1 (P = 0	0.96); I² =	83 0%	2			83	100.0%	-42.96 [-122.2	8,36.37]	-500 -250 Favours SGL1	0 0 1 12i Fa	1 1 250 500 avours Placebo
(f)		OL TO:											
Study or Subgroup Mean	n [%]	SD [%]	Tota	I Mean [%	6] SD	ols [%] 1	otal	Weight	Mean diffei IV, Random,	ence 95% Cl	Mea IV, Ra	in differen indom, 95	ce % Cl
Dayem 2023 (DACAMI TRIAL) von Lewinski 2022 (EMMY TRIAL)	33.04 4 -25.9 1	3.983597 5.628713	7 3 2	50 22. 237 -23	87 40.4 3.6 19.6	64909 18997	5 23	0 27.9% 9 72.1%	10.17 [-6.40 -2.30 [-5.4	, 26.74] 9 , 0.89]			
Total (95% CI) Heterogeneity: Tau ² = 40.71; Chi ² = 2.10, c Test for overall effect: $Z = 0.21$ (P = 0.83) Test for subgroup differences: Not applicat	df = 1 (P	= 0.15);	2 ² = 52%	:87 %			28	9 100.0%	1.18 [-9.78	, 12.14]	-20 -2 Favours SGLT;	10 0 10 2i Fa	20 vours Control

(a) Cardiovascular death; (b) all-cause death/mortality; (c) hospitalization for heart failure; (d) LVEF; (e) NT-proBNP and (f) percentage change in NT-proBNP from baseline. CI = confidence interval; df = degrees of freedom; IV = inverse variance; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal pro-b-type natriuretic peptide; SD = standard deviation; SGLT2i = sodium-glucose co-transporter-2 inhibitors.

Results

This SRM was done as per the preregistered protocol with PROSPERO without any deviation (CRD42024533973). A total of 8,922 articles were found after the initial search (*Figure 1*). Four hundred and eighty duplicates were removed following the screening of the titles, and the search was reduced to 106 articles. After further review of these 106 abstracts, the search was reduced to 12 studies, which were then evaluated in detail for inclusion in this meta-analysis (*Supplementary Material 1*). Eight

articles presenting data from six different RCTs (7,409 patients) that fulfilled all criteria were analysed in this meta-analysis. $^{6-9,19-22}$

The study by James et al. was a double-blinded RCT comparing 1-year outcomes of dapagliflozin 10 mg/day with placebo initiated in patients with AMI within 10 days of the index event (Dapaglifozin Effects on Cradiometabolic Outcomes in Patients with an Acute Heart Attack [DAPA-MI]; ClinicalTrials.gov identifier: NCT04564742).⁶ The study

by Butler et al. was a double-blinded RCT comparing outcomes in patients receiving empagliflozin 10 mg/day with placebo when initiated with 14 days of AMI, having a mean follow-up of around 18 months (Empagliflozin after Acute Myocardial Infarction [EMPACT-MI]: A Study to Test Whether Empagliflozin Can Lower the Risk of Heart Failure and Death in People Who Had a Heart Attack [Myocardial Infarction]; ClinicalTrials.gov identifier: NCT04509674).⁷ The study by Dayem et al. was a double-blinded RCT comparing 12-week outcomes of the impact on NT-proBNP and echocardiography parameters after the initiation of dapagliflozin 10 mg/day with placebo in patients with AMI (Impact of Dapagliflozin on Cardiac Function Following Anterior Myocardial Infarction in Non-diabetic Patients [DACAMI trial]; ClinicalTrials.gov identifier: NCT05424315).⁸ In the DACAMI trial, dapagliflozin was started within 72 h of ST elevation myocardial infarction.⁸ The study by von Lewinski et al. was a double-blinded RCT evaluating 26-week outcomes of the impact on NT-proBNP and echocardiographic parameters after the initiation of empagliflozin 10 mg/day with placebo, initiated within 72 h of PCI in patients with AMI (Empagliflozin in Acute Myocardial Infarction [EMMY trial]; ClinicalTrials.gov identifier: NCT03087773).9 Benedikt et al. studied changes in inflammatory markers with empagliflozin therapy in the same cohort of patients with MI from the EMMY trial.¹⁹ Therefore, the results from this article have been analysed under von Lewinski et al. in this SRM. Sourij et al. analysed the gender differences in response to empagliflozin therapy after AMI in the cohort of patients of the EMMY trial.²⁰ The study by Mozawa et al. was a double-blinded RCT evaluating the impact of empagliflozin 10 mg/day compared with placebo initiated within 2 weeks of AMI in Japanese patients (Effects of Empagliflozin versus Placebo on Cardiac Sympathetic Activity in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus [EMBODY trial]: UMIN000030158]).²¹ The article by Hoshika et al. was from the same cohort of patients in the EMBODY trial.²² Therefore, the results from this study have been presented under Mozawa et al. in this SRM. The study by Adel et al. evaluated the impact of empagliflozin 10 mg/day compared with placebo in improving CV outcomes in patients with diabetes with acute coronary syndrome (ACS) after PCI.²³ The details of the studies included in this SRM have been elaborated in Table 1.6-9,19,20

SOdium-glucose CO-transporter inhibition in patients with newly detected Glucose Abnormalities and a recent Myocardial Infarction (SOCOGAMI, EudraCT number: 2015-004571-73) was a randomized, double-blind, placebo-controlled trial, which was excluded from this SRM, as it involved patients with AMI or unstable angina pectoris in the last 6 months.^{24,25} The study by Khiali et al. was excluded from this analysis, although they initiated empagliflozin alone or in combination with colchicine, within 72 h of MI, as they did not evaluate the primary and secondary outcomes evaluated in this SRM.²⁶ They looked at changes in echocardiographic parameters and systemic inflammatory markers after 12 weeks of empagliflozin and/or colchicine use following AMI.²⁶ The RCT by Karetnikova et al. evaluated the role of empagliflozin in patients undergoing PCI for coronary artery disease (CAD).²⁷ However, this RCT was excluded from our analysis because the elective PCI was done in stable patients with CAD rather than in the setting of AMI.²⁷ In addition, empagliflozin was initiated 1 month before the elective PCI.²⁷ Therefore, this RCT did not fulfil our inclusion and exclusion criteria.

Risk of bias in the included studies

The summaries of ROB of the six RCTs included in this SRM have been elaborated in *Supplementary Material 2a and b*. Random sequence generation, allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), attrition bias and reporting bias were judged

to be at low ROB in all six studies (100%). Source of funding, especially pharmaceutical, authors from the pharmaceutical organizations and conflict of interests were looked into the 'other bias' section. Other bias was judged to be at low risk in two out of six RCTs (33.33%) (*Supplementary Material 2a and b*).

Effect of sodium–glucose co-trasnporter-2 inhibitors on primary outcomes

Cardiovascular death, all-cause death/mortality and hospitalization for heart failure

Data from four studies involving 11,108 patients with AMI were analysed to find out the impact of early initiation of SGLT2i following MI on CV death, all-cause death and HHF. CV deaths following AMI were similar in patients initiated on SGLT2i compared with placebo (odds ratio [OR]: 1.04; 95% confidence interval [CI]: 0.83–1.30; p=0.76; l^2 =0% [low heterogeneity]; *Figure 1a*). All-cause mortality was also similar in patients receiving SGLT2i compared with placebo, following AMI (OR: 1.00; 95% CI: 0.82–1.21; p=0.98; l^2 =0% [low heterogeneity]; *Figure 1b*). HHF was significantly lower in patients who had early initiation of SGLT2i following MI compared with placebo (OR: 0.75; 95% CI: 0.62–0.90; p=0.002; l^2 =0% [low heterogeneity]; *Figure 1c*).

Effect of sodium–glucose co-trasnporter-2 inhibitors on secondary outcomes

Left ventricular ejection fraction

Data from three studies involving 669 patients with AMI were analysed to find out the impact of early initiation of SGLT2i following MI on LVEF in echocardiography. Patients initiated on SGLT2i had significantly higher LVEF compared with those on placebo (MD: 1.65%; 95% CI: 0.34–2.96; p=0.01; l^2 =0% [low heterogeneity]; *Figure 1d*).

N-terminal pro-b-type natriuretic peptide

Data from two studies (165 patients) on AMI were analysed to find out the impact of SGLT2i on circulating NT-proBNP levels. Changes in the absolute value of NT-proBNP (MD: -42.96 ng/L; 95% CI: -122.28 to 36.37; p=0.29; l^2 =0% [low heterogeneity]; *Figure 1e*) were similar in patients receiving SGLT2i compared with those receiving placebo. Data from two studies (576 patients) on AMI were analysed to find out the impact of SGLT2i on the percentage change in circulating levels of NT-proBNP compared with baseline. Percentage change in NT-proBNP was similar in patients receiving SGLT2i compared with placebo (MD: 1.18%; 95% CI: -9.78 to 12.14; p=0.83; l^2 =52% [moderate heterogeneity]; *Figure 1f*).

High-sensitivity C-reactive protein

Data from two studies having 533 patients with AMI were analysed to find out the impact of SGLT2i on circulating inflammatory marker hs-CRP. hs-CRP levels were similar in patients receiving SGLT2i compared with those receiving placebo (MD: -0.08 mg/L; 95% CI: -0.29 to 0.14; p=0.48; l^2 =0% [low heterogeneity]; *Figure 2a*).

Stroke, all-cause hospitalization and myocardial infarction

Data from two studies involving 4,110 patients with AMI were analysed to find out the impact of early initiation of SGLT2i following MI on the occurrence of stroke and all-cause hospitalization. Stroke (OR: 0.58; 95% CI: 0.26–1.27; p=0.17; *Figure 2b*) and all-cause hospitalization (OR: 1.13; 95% CI: 0.97–1.32; p=0.11; l^2 =0% [low heterogeneity]; *Figure 2c*) following AMI were similar in patients on SGLT2i compared with placebo. Data from one study were available analysing the occurrence of a recurrent event of MI following the use of SGLT2i after an index AMI. Recurrence of MI following AMI was similar in patients on SGLT2i compared with placebo (OR: 1.12; 95% CI: 0.72–1.73; p=0.61; l^2 =0%; DAPA-MI trial).⁶

Table 1: Baseline characteristics of patients in the randomized controlled trials analysed in this systematic review and meta-analysis^{6-9,19,20}

							(3 m²)) STE	NS	Ξ	ular Stro	AF	T2C	Ŧ	PAI	lgina (%)	racteristic	study
Adel	Empagliflozin (n=45)	55 (45.5–64)	60.0	75 (67.5–84.5)	1	130 (116.25–150)	72 (61–83)	7.8 (7.2–8.45)	09 IN	EMI 4.4		ke 2.2	1	100	57.8	-	35.6	inclusion criteri years with a prio and ACS, includir non-ST elevatio angina. Exclusi urinary and geni severe liver fail eGFR <30 mL/mir edhe	
2022 ²⁰	Control/placebo (n=48)	57 (50-66.75)	60.4	69.5 (65–83.75)	1	130 (116.25–140)	76 (61.25–81)	7.8 (7.1–8.05)	20	8.3		4.2	1	100	66.7	I	43.8	ia: adults over 18 or diagnosis of T2D ng ST elevation MI, on MI or unstable ion criteria: DKA, tal infections, T1D, lure, malignancy, n/1.73 m ² and non- srence	24
Butler 2024 (EN	Empagliflozin (n=3,260)	63.6 ± 11.0	75.1	I	28.1 ± 5	120.3 (14.6)	77.5 (62.2–91.0)	I	75	25	11.9	1	11.0	31.7	69.4	5.3	0	Inclusion crite 18 years hos acute MI withir randomizatic evidence of (developed LVEF symptoms o necessitating trei criteria: previoi diagnosis and	N
MPACT-MI trial) ⁷	Control/ placebo (n=3,262)	63.7 ± 10.8	75.1	1	28.1 ± 5	120.5 (15.2)	78.0 (61.7–91.4)	1	73.6	26.4	14.1	1	11.1	32.1	69.8	5.5	0	ria: adults over pitalized with 114 days before on, presenting either a newly - <45% or signs/ of congestion atment. Exclusion us heart failure Luse of SGLT2i	42
Dayem 2023 (D	Dapagliflozin (n=50)	55.24 ± 13.2	84	1	29.96 ± 4.9	1	82.61 ± 14.31	I	1	1	12	0	1	1	64	I	I	Inclusion critt with anterior <50% and suc Exclusion critt with diabete cardiotoxic r haemoglobi chronic orge existing SGL72i additional ant or contrainal dapagli	1,
ACAMI trial) ⁸	Control (n=50)	56.70 ± 11.5	82	I	30.13 ± 4.6	I	85.49 ± 13.49	I	I	I	14	0	I	I	58	I	I	ria: patients STEMI, LVEF cessful pPCI. eria: patients ss, prior HF, medication, nopathies, an damage, use, need for use, need for coagulation icoagulation iflozin	6
James 2024 (D/	Dapagliflozin (n=2,019)	63.0 ± 11.06	80.8	85.5 ± 15.87	1	119.1 ± 16.23	83.5 ± 17.12	5.7 ± 0.58	72.6	27.4	8.8	2.3	1	0	I	I	0	Inclusion crit adults over hospitalized for with LV systolic or Q-wave N Exclusion criteri diabetes, sym with reduced LV current SGI72	48
APA-MI trial) ⁶	Control/ placebo (n=1,998)	62.8 ± 10.64	79.0	85.5 ± 16.54	I	118.7 ± 16.62	83.4 ± 16.91	5.7 ± 0.51	71.5	28.5	9.5	2.5	1	0	I	I	0	18 years acute MI and c dysfunction MI on ECG. a: established ptomatic HF Ptomatic HF it treatment	
Mozawa 202 trial	Empagliflozin (n=46)	63.9 (10.4)	82.6	70.1 ± 13.7	25.2 ± 3.7	I	64.60 ± 14.95	6.82 ± 1.00	I	I	I	15.2	I	100	82.6	I	I	Inclusion criteri 20 years with T2D according guidelines ar within 2–12 we onset of acute onset of acute of insulin, GLP of insulin, GLP of os sulfonylu > 10%, recent D renal dystun c45 mL/min/1.1 functional class I pregnancy or b and contrainc empagil	24
1 (EMBODY) ¹⁹	Control/ placebo (n=50)	64.6 ± 11.6	78	68.1 ± 14.4	25.2 ± 4.1	I	66.14 ± 15.72	6.89 ± 0.92	I	I	I	22	I	100	78.0	I	I	a: adults over diagnosed to Japanese id patients eks after the MI. Exclusion sistent AF, use rirea, HDA1C RA or coma, tion (eGFR 73 m ³), NYHA V heart failure, reastfeeding dications to filozin	
von Lewinski 20	Empagliflozin (n=237)	57 (52–64)	82	I	27.7 (25.3–30.3)	125 (116–131)	92 (78–101)	5.60 (5.40-6.00)	I	1	5.9	2.1		13	39	I	I	Inclusion criteria: I years with confirm (CK > 800 IU/L), P (D > 10× upper lir mL/min/1.73 m ² patients with n haemodynamic in or genital infectio or genital infectio	
022 (EMMY trial) ⁹	Control/placebo (n =239)	57 (52–65)	82	I	27.2 (24.9–30.2)	125 (118–131)	91 (78–102)	5.70 (5.40-6.00)	I	I	3.8	0.4		14	45	I	I	patients aged 18–80 med acute large MI nigh troponin T (or nit, and eGFR >45 Exclusion criteria: on T2D, pH <7.32, nstability, acute UTI n, current or recent creatment	26

Table 1: Continued

۲ trial) ⁹	placebo 239)	ons and erence in and r severe were ybutyrate rificantly group e was no
2022 (EMM [\]	Control/ (n =2	inital infection infinital infection empaglifications inceptisodes beta-hydroxy ncreased sig mpaglification ilacebo, therenco
von Lewinski	Empagliflozin (n=237)	Incidence of ge showed no sig between the placebo. No am hypoglycaem reported. While t concentrations in more in the er compared with p
1 (EMBODY) ¹⁹	Control/ placebo (n=50)	
Mozawa 202 trial	Empagliflozin (n=46)	1
4PA-MI trial) ⁶	Control/ placebo (n=1,998)	increase in rse events adverse at could associated x such as hypotension, or genital ons
James 2024 (D4	Dapagliflozin (n=2,019)	There was no serious adver related to a reactions th potentially be with SGLTZi hypovolaemia, l amputations infecti
ACAMI trial) ⁸	Control (n=50)	patients in up receiving ncountered infections or ic episodes
Dayem 2023 (D	Dapagliflozin (n=50)	None of the the study grou dapagliflozin e genitourinary i hypoglycaem
APACT-MI trial) ⁷	Control/ placebo (n=3,262)	lifference in the poglycaemia or amputations
Butler 2024 (EN	Empagliflozin (n=3,260)	There was no d incidence of hy lower limb a
2022 ²⁰	Control/placebo (n=48)	
Adel 2	Empagliflozin (n=45)	
		sam
	Paramete	Key outco

An currino variable new before synesser entried as mean a standard vervator of media interduative function of the standard vervator of media intercuent as mean a standard vervator of media interval and the polynet as mean asserting the standard vervator of media interval and the standard vervator of the polynet standard vervator of the polynet standard vervator and the polynet standard vervator of the polynet standard vervator of the polynet standard vervator of the polynet standard vervator and the polynet standard vervator of the polynet standard vervator and the polynet standard vervator and the polynet standard vervator of the polynet standard vervatore of the polynet standard ver infection. Figure 2: Forest plot highlighting the impact of early initiation of sodium–glucose co-transporter-2 inhibitors in patients with myocardial infarction

(a)		SGLT2i			С	ontrols			Mean dif	erence	Mean difference		
Study or Subgroup	/lean [mg/L]	SD [mg/l	.] To	otal Mea	n [mg/L]	SD [mg/L]	Total	Weight	IV, Randon	n, 95% Cl	IV, Rar	ndom, 95% Cl	
Mozawa 2021 (EMBODY TRIAL)	-0.126	0.	56	27	-0.059	0.21	30	92.7%	-0.07 [-0	.29 , 0.16]			
von Lewinski 2022 (EMMY TRIAL)	-1.01	5.5091	21	237	-0.8	3.060564	239	7.3%	-0.21 [-1	.01 , 0.59]		- T	
Total (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 0.1 Test for overall effect: Z = 0.70 (P = 0.	1, df = 1 (P = 48)	0.74); I² =	0%	264			269	100.0%	-0.08 [-0	.29 , 0.14]	-2 -1		
(b)		OL TO:		0				0.1.1.			Pavouis 3GL12		
	5	GLIZI		Con	Total	141-1-1-4		Udds ra			Udds r	atio	
Study or Subgroup	Event	s lot	al	Events	Iotal	Weight	IV, R	andom,	, 95% CI		IV, Random	1, 95% CI	
Adel 2022		0	45	0	4	.8		Not e	estimable				
James 2024 (DAPA-MI TRIAI	_)	10 2	019	17	199	8 100.0%	, D	0.58 [0.:	26 , 1.27]	_		-	
Total (95% CI)		2	064		204	6 100.0%	b (0.58 [0.:	26 , 1.27]			-	
Total events:		10		17									
Heterogeneity: Not applicable)									0.2	0.5 1	2 5	
Test for overall effect: Z = 1.3	6 (P = 0.17	7)								Favours	s SGLT2i	Favours Placebo	
Test for subgroup differences	: Not applie	cable											
(c)	s	GLT2i		Cont	trols			Odds ra	atio		Odds i	ratio	
Study or Subgroup	Event	s Tot	al	Events	Total	Weight	IV, R	andom	, 95% CI		IV, Random	n, 95% CI	
Adel 2022		2	45	4	4	8 0.8%	, 0	0.51 [0.	09 , 2.94]				
James 2024 (DAPA-MI TRIA	_) 4	18 2	019	372	199	99.2%	6	1.14 [0.	98 , 1.33]				
Total (95% CI)		2	064		204	6 100.0%	0	1.13 [0.	97 , 1.32]				
Total events:	4	20		376				_			•		
Heterogeneity: Tau ² = 0.00; C	chi² = 0.80,	df = 1 (P = 0	.37); l² =	0%					01	02 05 1	2 5 10	
Test for overall effect: Z = 1.5	9 (P = 0.11	1)								Favours	SGLT2i	Favours Placebo	
Test for subgroup differences	: Not appli	cable											

(a) hs-CRP; (b) stroke and (c) all-cause hospitalization.

C = confidence interval; df = degrees of freedom; hs-CRP = high-sensitivity C-reactive protein; IV = inverse variance; SD = standard deviation; SGLT2i = sodium–glucose cotrasnporter-2 inhibitors.

Safety

Weight

Data from three studies involving 4,206 patients with AMI were analysed to find out the impact of early initiation of SGLT2i following MI on body weight. Patients receiving SGLT2i had significantly lower body weight compared with placebo (MD: -1.76 kg; 95% CI: -2.19 to -1.32]; p<0.001; l^2 =0% [low heterogeneity]; *Figure 3a*).

Ketoacidosis, acute renal failure and hepatic injury

Data from two studies involving 6,939 patients with AMI were analysed to find out the impact of early initiation of SGLT2i following MI on the occurrence of ketoacidosis, acute renal failure and hepatic injury. The occurrence of ketoacidosis (OR: 2.00; 95% CI: 0.18–22.04; p=0.57; *Figure 3b*), acute renal failure (OR: 0.72; 95% CI: 0.49–1.08; p=0.11; *Figure 3c*) and hepatic injury (OR: 2.88; 95% CI: 0.74–11.17; p=0.13; h^2 =0% [low heterogeneity]; *Figure 3d*) was similar in patients receiving SGLT2i compared with placebo.

Funnel plots were plotted to evaluate the presence of publication bias and have been elaborated in *Supplementary Material 3*. All the key outcomes had low publication bias. The SoF of some of the major outcomes of this SRM has been elaborated in *Table 2*. All the key outcomes of this SRM had a high grade of evidence.

Discussion

In the different cardiovascular outcome trials (CVOTs) in patients with T2D, only empagliflozin and canagliflozin have demonstrated superiority in reducing 3-point major adverse CV events (3P MACE; CV mortality, nonfatal MI and nonfatal stroke) compared with placebo.^{28,29} The same has not been seen in CVOTs with dapagliflozin, ertugliflozin and sotagliflozin, highlighting the heterogeneity in outcomes across different SGLT2i.^{30–32} The heterogeneity seen with SGLT2is in terms of CVOT outcomes may be related to trial populations and study designs rather than the individual molecules. In a meta-analysis of CVOTs of different SGLT2i in T2D, a significant reduction in CV death and all-cause mortality has been documented.³³ Data with regard to the reduction of HHF and heart failure-related deaths with the use of SGLT2i in patients with or without diabetes are more homogeneous and robust across the different SGLT2i.⁴

SGLT2 inhibitors may have some protective benefit in reducing contrast-induced acute kidney injury events in patients with ACS undergoing PCI.³⁴ Patients with AMI tend to be in a more critical condition and have a different metabolic milieu compared with stable patients living with T2D seen in the outpatient departments. Whether SGLT2i can replicate the same CV benefits in patients with MI as has been seen in patients living with T2D is not known.³⁴

Figure 3: Forest plot highlighting the impact of early initiation of sodium–glucose co-transporter-2 inhibitors in patients with myocardial infarction

(a) Study or Subgroup	Mean [kg]	SGLT2i SD [kg] Total	Mean [kg]	Controls SD [kg]	Total	Weight	Mean differe IV, Random, 9	nce 5% Cl	Mean IV, Ran	difference dom, 95% Cl
Adel 2022	-2	4.9927	89 4	5 0	3.44388	35 48	6.2%	-2.00 [-3.75	0.251		
James 2024 (DAPA-MI TRIAL)	-1.41	7.7900	17 201	9 0.24	7.8633	11 1998	80.8%	-1.65 [-2.13	-1.17]		
Mozawa 2021 (EMBODY TRIAL)	-2.23	3.	56 4	6 0.08	2.2	25 50	13.1%	-2.31 [-3.51	, -1.11]	_ _	
Total (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = ⁻ Test for overall effect: Z = 7.92 (P < Test for subgroup differences: Not a	1.07, df = 2 0.00001) applicable	(P = 0.58	211 3); I ² = 0%	0		2096	100.0%	-1.76 [-2.19	. -1.32] F	+ + -4 -2 avours SGLT2i	0 2 4 Favours Placebo
(b)		SGL	12i	Contro	ls		Odd	ls ratio		Odds	ratio
Study or Subgroup	Ev	ents	Total	Events	Total	Weight	IV, Rand	om, 95% Cl		IV, Randon	n, 95% Cl
Butler 2024 (EMPACT-MLTRL		2	3234	1	3229	100.0%	2 00	0 18 22 041			
von Lewinski 2022 (EMMY TR	RIAL)	0	237	0	239	100.070	1.00	lot estimable			
Total (95% CI)			3471		3468	100.0%	2.00	0.18 , 22.04]			
Total events:		2		1							
Heterogeneity: Not applicable									0.01	0.1 1	10 100
Test for overall effect: Z = 0.56	6 (P = 0.57	")							Favour	s SGLT2i	Favours Placebo
Test for subgroup differences:	Not applie	able									
(c)		SGL	T2i	Contro	ls		Odd	ds ratio		Odds	ratio
Study or Subgroup	Ev	ents	Total	Events	Total	Weight	IV, Rand	lom, 95% Cl		IV, Randor	n, 95% Cl
Butler 2024 (EMPACT-MI TRI	AL)	43	3234	59	3229	100.0%	0.72	2 [0.49 , 1.08]			
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF	AL) RIAL)	43 0	3234 237	59 0	3229 239	100.0%	0.72 N	2 [0.49 , 1.08] Not estimable		-	
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI)	AL) RIAL)	43 0	3234 237 3471	59 0	3229 239 3468	100.0%	0.72 1 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]			
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events:	AL) RIAL)	43 0 43	3234 237 3471	59 0	3229 239 3468	100.0%	0.72 1 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]			
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heteroreneity: Not applicable	AL) RIAL)	43 0 43	3234 237 3471	59 0 59	3229 239 3468	100.0% 100.0%	0.72 1 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]			
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable	AL) RIAL)	43 0 43	3234 237 3471	59 0 59	3229 239 3468	100.0%	0.72 1 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]	0.2		
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences	AL) RIAL) D (P = 0.11	43 0 43	3234 237 3471	59 0 59	3229 239 3468	100.0%	0.72 1 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]	0.2 Favour	0.5 1 s SGLT2i	- - 2 Favours Placebo
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences:	AL) RIAL) 0 (P = 0.11	43 0 43	3234 237 3471	59 0 59	3229 239 3468	100.0%	0.72 N 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08]	0.2 Favour	0.5 1 9 SGLT2i	- - 2 Favours Placebo
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d)	AL) RIAL) 0 (P = 0.11	43 0 43)) cable SGL	3234 237 3471 T2i	59 0 59 Contro	3229 239 3468 DIs	100.0%	0.72 1 0.72 Od	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio	0.2 Favour	0.5 1 s SGLT2i	- - 2 5 Favours Placebo ratio
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup	AL) RIAL) D (P = 0.11 Not appli	43 0 43)) cable SGL vents	3234 237 3471 T2i Total	59 0 59 Contro Events	3229 239 3468 DIS Total	100.0%	0.72 1 0.72 0.72	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI	0.2 Favour	0.5 1 s SGLT2i Odds IV, Randoi	- 2 5 Favours Placebo ratio m, 95% Cl
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI	AL) RIAL) 0 (P = 0.11 Not applic Et	43 0 43) cable sGL vents 8	3234 237 3471 T2i Total 3234	59 0 59 Contro Events	3229 239 3468 3468 Dis Total 3229	100.0% 100.0% Weight 76.2%	0.72 1 0.72 0.72 0d	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86]	0.2 Favour	0.5 1 0.5 1 S SGLT2i Odds IV, Randor	Favours Placebo
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TR Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TR	AL) RIAL) D (P = 0.11 Not applie Not applie RIAL) RIAL)	43 0 43 ()) cable SGL vents 8 1	3234 237 3471 T2i Total 3234 237	59 0 59 Contro Events 2 1	3229 239 3468 DIS Total 3229 239	100.0% 100.0% Weight 76.2% 23.8%	0.72 1 0.72 0.72 IV, Ranc 4.00 1.01	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22]	0.2 Favour	0.5 1 s SGLT2i Odds IV, Randou	Tavours Placebo
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI)	AL) RIAL) 0 (P = 0.11 Not applie Not applie RIAL) RIAL)	43 0 43 cable sGL vents 8 1	3234 237 3471 T2i Total 3234 237 3471	59 0 59 Contro Events 2 1	3229 239 3468 DIS Total 3229 239 3468	100.0% 100.0% Weight 76.2% 23.8%	0.72 1 0.72 0.72 0.72 10, Ranc 4.00 1.01 2.88	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22]	0.2 Favour	0.5 1 s SGLT2i IV, Randoi	ratio m, 95% CI
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events:	AL) RIAL) 0 (P = 0.11 Not appli Not appli RIAL) RIAL)	43 0 43 () cable SGL vents 8 1	3234 237 3471 T2i Total 3234 237 3471	59 0 59 Contro Events 2 1	3229 239 3468 Dis Total 3229 239 3468	100.0% 100.0% Weight 76.2% 23.8% 100.0%	0.72 1 0.72 0.72 1V, Ranc 4.00 1.01 2.88	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22] [0.74 , 11.17]	0.2 Favour	0.5 1 s SGLT2i IV, Randoi	25 Favours Placebo ratio m, 95% Cl
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Tau ² = 0.00; C	AL) RIAL) 0 (P = 0.11 Not appli Not appli RIAL) RIAL) RIAL)	43 0 43 () cable SGL vents 8 1 9 df = 1	3234 237 3471 T2i Total 3234 237 3471 (P = 0.40	59 0 59 Contro Events 2 1 3): 1 ² = 0%	3229 239 3468 50s Total 3229 239 3468	100.0% 100.0% Weight 76.2% 23.8% 100.0%	0.72 1 0.72 0.72 1V, Rand 4.00 1.01 2.88	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22] [0.74 , 11.17]	0.2 Favour	0.5 1 s SGLT2i Odds IV, Randor	ratio m, 95% Cl
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.5	AL) P(P = 0.11 P(P = 0.11 Not applic P(AL) P	43 0 43 ()) cable SGL vents 8 1 9 , df = 1	3234 237 3471 T2i Total 3234 237 3471 (P = 0.40	59 0 59 Contro Events 2 1 3); I ² = 0%	3229 239 3468 50s Total 3229 239 3468	100.0% 100.0% Weight 76.2% 23.8% 100.0%	0.72 1 0.72 0.72 1V, Ranc 4.00 1.01 2.88	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22] [0.74 , 11.17]	0.2 Favour	0.5 1 s SGLT2i Odds IV, Randor	ratio m, 95% Cl
Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Not applicable Test for overall effect: Z = 1.60 Test for subgroup differences: (d) Study or Subgroup Butler 2024 (EMPACT-MI TRI von Lewinski 2022 (EMMY TF Total (95% CI) Total events: Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.5	AL) P(P = 0.11) P(P = 0.11) Not applie P(AL)	43 0 43 ()) cable SGL vents 8 1 9 , df = 1 3) cable	3234 237 3471 T2i Total 3234 237 3471 (P = 0.40	59 0 59 Contro Events 2 1 3); I ² = 0%	3229 239 3468 50Is Total 3229 239 3468	100.0% 100.0% Weight 76.2% 23.8% 100.0%	0.72 1 0.72 0.72 1V, Ranc 4.00 1.01 2.88	2 [0.49 , 1.08] Not estimable 2 [0.49 , 1.08] ds ratio dom, 95% CI [0.85 , 18.86] [0.06 , 16.22] [0.74 , 11.17]	0.2 Favour 0.01 Favour	0.5 1 S SGLT2i Odds IV, Randon	ratio m, 95% Cl

(a) Body weight; (b) ketoacidosis; (c) acute kidney injury and (d) hepatic injury.

CI = confidence interval; df = degrees of freedom; IV = inverse variance; SD = standard deviation; SGLT2i = sodium-glucose co-trasnporter-2 inhibitors.

This is the first SRM to highlight the efficacy and safety of early initiation of SGLT2i following AMI. The initiation of SGLT2i within 2 weeks of AMI was associated with significantly reduced future risk of HHF, without any additional beneficial impact on CV mortality, all-cause mortality, stroke and all-cause hospitalization. No significant improvement in circulating levels of NT-pro-BNP was noted. In addition, no improvement in systematic inflammation (hs-CRP) was noted. The use of SGLT2i following MI was well tolerated, without any increased occurrence of ketoacidosis, acute renal failure and hepatic injury. A mild but statistically significant reduction in body weight was noted.

This SRM highlights that the benefits of using SGLT2i in patients with MI are restricted to improving heart failure outcomes, without any impact on ASCVD and mortality. Therefore, the results are much more tempered compared with those seen in patients with T2D with ASCVD. Mukhopadhyay et al., in their meta-analysis of CVOTs of SGLT2i in T2D, highlighted that SGLT2i reduces MACE without significantly reducing the incidence of MI or stroke (fatal and nonfatal), probably implicating mechanisms unrelated to anti-atherogenic effects.³⁵

It is now increasingly being considered that the reduction in CV death and all-cause mortality with the use of SGLT2i in T2D, without any significant reduction in MI and stroke, may be due to non-atherosclerotic mechanisms such as reduction in heart failure-related events, sudden cardiac death and arrhythmias.³⁵ The outcomes of this SRM in patients with MI sync with the evolving understanding of the predominantly vascular non-atherosclerotic mechanism of action of SGLT2i in improving cardiac outcomes. In patients with MI, early use of SGLT2i results in predominantly vascular benefits of reduction in hospital admissions for heart failure, without any beneficial impact on stroke, CV mortality and all-cause mortality. Another reason for the tempered results with SGLT2i use in AMI, as seen in this SRM, may be because the heart failure seen in the setting of AMI is often transient. It results from myocardial stunning, neurohumoral activation and systemic inflammation, which are reversed to a great extent following prompt re-vascularization.³⁶

Another class of medication, which has played a major role in improving CV outcomes in patients with diabetes and stable established ASCVD, is glucagon-like peptide-1 receptor agonists (GLP1RAs).³⁷

Table 2: Summary of the findings of the key outcomes of this systematic review and meta-analysis evaluating the role of sodium–glucose co-transporter-2 inhibitors in acute myocardial infarction

	Anticipated a	absolute effects [*] (95% CI)			
Outcomes	Risk with placebo in the MI group	Risk with SGLT2i in the MI group	Relative effect (95% Cl)	No. of participants (studies)	Certainty of the evidence (GRADE)
CV death	28 per 1,000	29 per 1,000 (23–36)	OR 1.04 (0.83–1.30)	11,108 (four RCTs)	⊕⊕⊕⊕ High
All-cause death	38 per 1,000	38 per 1,000 (32–46)	OR 1.00 (0.82–1.21)	11,108 (four RCTs)	⊕⊕⊕⊕ High
Hospitalization for heart failure	49 per 1,000	37 per 1,000 (31–44)	OR 0.75 (0.62–0.90)	11,108 (four RCTs)	⊕⊕⊕⊕ High
All-cause hospitalization	184 per 1,000	203 per 1,000 (179–229)	OR 1.13 (0.97–1.32)	4,110 (two RCTs)	⊕⊕⊕⊕ High
Acute renal failure	17 per 1,000	12 per 1,000 (8–18)	OR 0.72 (0.49–1.08)	6,939 (two RCTs)	⊕⊕⊕⊕ High
Hepatic injury	1 per 1,000	2 per 1,000 (1–10)	OR 2.88 (0.74–11.17)	6,939 (two RCTs)	⊕⊕⊕⊕ High
Ketoacidosis	0 per 1,000	1 per 1,000 (0–6)	OR 2.00 (0.18–22.04)	6,939 (two RCTs)	⊕⊕⊕⊕ High

*The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). GRADE Working Group grades of evidence – high certainty: we are very confident that the true effect lies close to that of the estimate of the effect. Moderate certainty: we are

moderately confidence in the effect estimate is limited; the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. Low certainty: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect. Very low certainty: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of the effect.

CI = confidence interval; CV = cardiovascular; GRADE = Grading of Recommendations Assessment, Development and Evaluation; MI = myocardial infarction; OR = odds ratio; RCT = randomized controlled trial; SGLT2i = sodium–glucose co-transporter-2 inhibitors.

In a meta-analysis of data from six RCTs involving patients with AMI undergoing PCI, GLP1RA treatment was associated with improvement in the LVEF along with a reduction in the infarct size, without any significant reduction in CV events.³⁸ Therefore, the outcomes of the use of GLP1RAs in the setting of AMI may be considered to be more tempered compared with the use in stable patients with ASCVD. As suggested by Karakasis et al., one reason may be the lack of dedicated CVOTs with GLP1RA in the setting of ACS; therefore, no solid evidence regarding their true CV efficacy on surrogate endpoints can be generated.³⁷ Thus, there remains an urgent need for dedicated studies evaluating the combination therapy of SGLT2i and GLP1RAs in patients with ACS, unstable angina and MI with non-obstructive coronaries. This combination therapy offers a dual beneficial impact on inflammation as well as on endothelial dysfunction.³⁷

From this SRM, it is interesting to consider that the reduction in HHF with the use of SGLT2i in MI was not associated with a significant reduction in circulating levels of NT-proBNP, a commonly accepted serologic measure of heart failure. This may primarily be due to the small number of patients evaluated with data being available from three different RCTs only. A limitation of the current SRM is that the analysis was done on extracted summary data of the published RCTs, rather than individual patient data. Only dapagliflozin and empagliflozin have been evaluated in AMI. Data from other SGLT2i are not available. The actual number of different types of CV events in the different RCTs was relatively small. The follow-up duration was short in three of the six RCTs analysed (*Table 1*). Additionally, outcome data of all the variables analysed were not available from all the RCTs analysed.

Our SRM provides reassuring data on the safety of SGLT2i use in AMI. SGLT2i should be especially used in the setting of AMI when there is a history of chronic heart failure, T2D or chronic kidney disease. This SRM supports the early initiation of SGLT2i in patients with AMI during their stay in the hospital or discharge from the hospital. Delayed initiation of SGLT2i post-AMI has the risk of patients being lost to follow up and thus missing out on the benefits of this class of medication. In conclusion, it may be said that the early use of SGLT2i in AMI is safe, well tolerated and associated with a reduction in HHF.

- Szummer K, Wallentin L, Lindhagen L, et al. Relations between implementation of new treatments and improved outcomes in patients with non-ST-elevation myocardial infarction during the last 20 years: Experiences from SWEDEHEART registry 1995 to 2014. Eur Heart J. 2018;39:3766–76. DOI: 10.1093/eurhearti/ ehy554.
- McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta-analysis. JAMA Cardiol. 2021;6:148–58. DOI: 10.1001/jamacardio.2020.4511.
- Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. *N Engl J Med*. 2022;387:1089–98. DOI: 10.1056/NEIM0a2206286.
 Vaduganathan M, Docherty KF, Claggett BL, et al. SGIT-2
- Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. *Lancet.* 2002;400:125.141, 2014;10.1416;470:410.1272;471.1416
- 2022;400:757-67. DOI: 10.1016/S0140-6736(22)01429-5.
 Anker SD, Butler J, Filippatos G, et al. Empaglificzin in heart failure with a preserved ejection fraction. *N Engl J Med.* 2021;385:1451-61. DOI: 10.1056/NEJMoa2107038.
- James S, Erlinge D, Storey RF, et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. *NEJM Evid*. 2024;3:EVIDoa2300286. DOI: 10.1056/EVIDoa2300286.

- Butler J, Jones WS, Udell JA, et al. Empagliflozin after acute myocardial infarction. N Engl J Med. 2024;390:1455–66. DOI: 10.1056/NEJMoa2314051.
- Dayem KA, Younis O, Zarif B, et al. Impact of dapagliflozin on cardiac function following anterior myocardial infarction in non-diabetic patients – DACAMI (a randomized controlled clinical trial). *Int J Cardiol*. 2023;379:9–14. DOI: 10.1016/j. ijcard.2023.03.002.
- von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagiflozin in acute myocardial infarction: The EMMY trial. *Eur Heart J*. 2022;43:4421–32. DOI: 10.1093/eurheartj/ehac494.
- Pfützner A, Klonoff D, Heinemann L, et al. Euglycemic ketosis in patients with type 2 diabetes on SGIT2-inhibitor therapy – An emerging problem and solutions offered by diabetes technology. *Endocrine*. 2017;56:212–6. DOI: 10.1007/s12020-017-1264-y.
- Solomon SD, Vaduganathan M, L. Claggett B, et al. Sacubitril/ valsartan across the spectrum of ejection fraction in heart failure. *Circulation*. 2020;141:352–61. DOI: 10.1161/ CIRCULATIONAHA.119.044586.
- Pfeffer MA, Claggett B, Lewis EF, et al. Angiotensin receptorneprilysin inhibition in acute myocardial infarction. N Engl J Med. 2021;385:1845–55. DOI: 10.1056/NEJMoa2104508.

- Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928. DOI: 10.1136/bmj.d5928.
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. *BMJ*. 2009;339:b2700. DOI: 10.1136/bmj. b2700.
- Dutta D, Agarwal A, Maisnam I, et al. Efficacy and safety of the novel dipeptidyl peptidase-4 inhibitor gemigliptin in the management of type 2 diabetes: A meta-analysis. *Endocrinol Metab.* 2021;36:374–87. DOI: 10.3803/EnM.2020.818.
- Dutta D, Bhattacharya S, Surana V, et al. Efficacy and safety of saroglitazar in managing hypertriglyceridemia in type-2 diabetes: A meta-analysis. *Diabetes Metab Syndr.* 2020;14:1759–68. DOI: 10.1016/j.dsx.2020.08.039.
- Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. 2008;336:924–6. DOI: 10.1136/ bmj.39489.470347.AD.
- Song F, Eastwood AJ, Gilbody S, et al. Publication and related biases. *Health Technol Assess*. 2000;4:1–115. DOI: 10.3310/ hta4100.
- 19. Benedikt M, Mangge H, Aziz F, et al. Impact of the SGLT2inhibitor empagliflozin on inflammatory biomarkers after acute

myocardial infarction – A post-hoc analysis of the EMMY trial. *Cardiovasc Diabetol*. 2023;22:166. DOI: 10.1186/s12933-023-01904-6.

- Sourij C, Aziz F, Tripolt NJ, et al. Effects of empagliflozin in women and men with acute myocardial infarction: An analysis from the EMMY trial. *Hellenic J Cardiol.* 2024;75:3–8. DOI: 10.1016/j.hjc.2023.05.007.
- Mozawa K, Kubota Y, Hoshika Y, et al. Empagliflozin confers reno-protection in acute myocardial infarction and type 2 diabetes mellitus. *ESC Heart Fail*. 2021;8:4161–73. DOI: 10.1002/ ehf2.13509.
- Hoshika Y, Kubota Y, Mozawa K, et al. Effect of empagliflozin versus placebo on body fluid balance in patients with acute myocardial infarction and type 2 diabetes mellitus: Subgroup analysis of the EMBODY trial. J Card Fail. 2022;28:56–64. DOI: 10.1016/j.cardfail.2021.07.022.
- Adel SMH, Jorfi F, Mombeini H, et al. Effect of a low dose of empagliflozin on short-term outcomes in type 2 diabetics with acute coronary syndrome after percutaneous coronary intervention. Saudi Med J. 2022;43:458–64. DOI: 10.15537/ smj.2022.43.5.20220018.
- Fortin E, Lundin M, Mellbin L, et al. Empagliflozin improves insulin sensitivity in patients with recent acute coronary syndrome and newly detected dysglycaemia: Experiences from the randomized, controlled SOCOGAMI trial. *Cardiovasc Diabetol*. 2023;22:208. DOI: 10.1186/s12933-023-01950-0.
- 25. Lundin M, Ferrannini G, Mellbin L, et al. SOdium-glucose Cotransporter inhibition in patients with newly detected glucose

abnormalities and a recent myocardial infarction (SOCOGAMI). Diabetes Res Clin Pract. 2022;193:110141. DOI: 10.1016/j. diabres.2022.110141.

- Khiali S, Taban-Sadeghi M, Sarbakhsh P, et al. Empagliflozin and colchicine in patients with reduced left ventricular ejection fraction following ST-elevation myocardial infarction: A randomized, double-blinded, three-arm parallel-group, controlled trial. *Eur J Clin Pharmacol.* 2024;80:93–104. DOI: 10.1007/s00228-023-03582-5.
- Karetnikova VN, Kchorlampenko AA, Kochergina AM, et al. Cardiometabolic effects of empagiliflozin in patients undergoing elective percutaneous coronary intervention for type 2 diabetes mellitus. *Kardiologiia*. 2022;62:64–72. DOI: 10.18087/ cardio.2022.12.n1838.
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. DOI: 10.1056/NEJMoa1504720.
 Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and
- cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57. DOI: 10.1056/NEJMoa1611925.
- Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. *N Engl J Med.* 2019;380:347–57. DOI: 10.1056/NEJMoa1812389.
- Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35. DOI: 10.1056/NEJMoa2004967.

- Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384:129–39. DOI: 10.1056/NEJMoa2030186.
- Mukhopadhyay P, Sanyal D, Chatterjee P, et al. Different sodium-glucose cotransporter-2 inhibitors: Can they prevent death? *Endocr Pract*. 2022;28:795–801. DOI: 10.1016/j. eprac.2022.05.005.
- Karakasis P, Fragakis N, Kouskouras K, et al. Sodium-glucose cotransporter-2 inhibitors in patients with acute coronary syndrome: A modern cinderella? *Clin Ther*. 2024;46:841–50. DOI: 10.1016/j.clinthera.2024.06.010.
- Mukhopadhyay P, Sanyal D, Chatterjee P, et al. SGLT2 inhibitors: Effect on myocardial infarction and stroke in type 2 diabetes. J *Clin Endocrinol Metab.* 2023;108:2134–40. DOI: 10.1210/clinem/ dgad113.
- Rouleau J. Decreasing the risk of heart failure in a changing post-myocardial infarction environment. *N Engl J Med.* 2024;390:1524–6. DOI: 10.1056/NEJMe2402719.
- Karakasis P, Patoulias D, Kassimis G, et al. Therapeutic potential of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists for patients with acute coronary syndrome: A review of clinical evidence. *Curr Pharm Des.* 2024;30:2109–19. DOI: 10.2174/01138161283040972405290535 38.
- Huang M, Wei R, Wang Y, et al. Protective effect of glucagon-like peptide-1 agents on reperfusion injury for acute myocardial infarction: A meta-analysis of randomized controlled trials. *Ann Med.* 2017;49:552–61. DOI: 10.1080/07853890.2017.1306653.